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The flow produced in an enclosed cylinder of height-to-radius ratio of two by the
counter-rotation of the top and bottom disks is numerically investigated. When the
Reynolds number based on cylinder radius and disk rotation is increased, the ax-
isymmetric basic state loses stability and different complex flows appear successively:
steady states with an azimuthal wavenumber of 1; travelling waves; near-heteroclinic
cycles; and steady states with an azimuthal wavenumber of 2. This scenario is un-
derstood in a dynamical system context as being due to a nearly codimension-two
bifurcation in the presence of O(2) symmetry. A bifurcation diagram is determined,
together with the most dangerous eigenvalues as functions of the Reynolds number.
Two distinct types of near-heteroclinic cycles are observed, with either two or four
bursts per cycle. The physical mechanism for the primary instability could be the
Kelvin–Helmholtz instability of the equatorial azimuthal shear layer of the basic
state.

1. Introduction
The flow produced in an enclosed cylinder driven by the rotation of the upper

and lower bounding disks has long been the focus of theoretical, experimental, and
numerical investigation. These flows, first studied by Batchelor (1951), were given the
name of von Kármán swirling flows by Zandbergen & Dijkstra (1987) and occur
frequently in geophysical and in industrial applications, notably turbines. There is a
vast literature on von Kármán flows; here, we confine ourselves to citing mainly recent
articles (i.e. after 1998), when non-axisymmetric simulations began to be feasible.

The flow depends strongly on the height-to-radius aspect ratio Γ , as well as on the
ratio s of the angular velocities of the upper and lower disks. Rotating flows with
Γ � 1 and s = 0 are called rotor–stator flows. These flows are characterized by the
coexistence of Ekman and Bödewadt boundary layers, in the neighbourhood of the
rotating and the stationary disk, respectively (e.g. Schouveiler, Le Gal & Chauve 1998,
2001; Gauthier, Gondret & Rabaud 1999). Above the threshold, the axisymmetric
basic state loses stability to circular patterns of axisymmetric vortices and spiral
waves. Circular patterns have been investigated with axisymmetric numerical simula-
tions (Lopez 1996; Cousin-Rittemard, Daube & Le Quéré 1998; Daube et al. 2001)
whereas spiral waves require three-dimensional computations (Serre et al. 2001; Serre,
Crespo del Arco & Bontoux 2001). Schouveiler et al. (2001) studied experimentally
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the transitions to circles and spiral waves characterized by a positive orientation
with respect to the rotating disk. Gauthier et al. (2002) showed that the co-rotating
and the weakly counter-rotating cases give instabilities similar to those in the rotor–
stator case, whereas a higher counter-rotation leads to a new spiral pattern whose
orientation is negative with respect to the faster disk.

For Γ = O(1), the case of a fixed top lid (s = 0) is also the most widely studied
configuration, both experimentally (Vogel 1968; Escudier 1984; Spohn, Mory &
Hopfinger 1998; Stevens, Lopez & Cantwell 1999) and numerically (Lugt & Abboud
1987; Daube & Sorensen 1989; Lopez 1990; Gelfgat, Bar-Yoseph & Solan 1996
a, b; Lopez, Marques & Sanchez 2001). The main reason for this interest in the
axisymmetric case is the possible onset of recirculation zones on the cylinder axis.
This was related by Escudier (1984) to vortex breakdown phenomena characterized
by reversed axial flow in the central vortex core. In the range of parameters studied by
Escudier, no significant departure from axisymmetry was observed, thereby justifying
the assumption of axisymmetry of early numerical studies. Gelfgat et al. (1996a) and
Lopez (1998) have surveyed the axisymmetric flow as a function of positive and
negative s.

With the development of more powerful computers, attention has turned to the
three-dimensional symmetry breaking of the basic state (Sotiropoulos & Ventikos
1998, 2001; Blackburn & Lopez 2000; Gelfgat, Bar-Yoseph & Solan 2001; Marques
& Lopez 2001; Blackburn & Lopez 2002; Marques, Lopez & Shen 2002; Lopez
et al. 2002). Gelfgat et al. (2001) performed a linear stability analysis of the steady
axisymmetric base flow in the range Γ ∈ [1, 3.5] and found that, for 1.63 6 Γ 6 2.76,
the first bifurcation is axisymmetric. For different values of Γ , many distinct scenarios
have been observed in nonlinear regimes: transition from bubble vortex breakdown
to a precessing columnar vortex core (Sotiropoulos & Ventikos 1998), coexistence of
structures with azimuthal wavenumbers 1 and 4 (Marques & Lopez 2001), double
Hopf bifurcation between azimuthal wavenumbers 0 and 2 (Marques et al. 2002),
periodic or quasi-periodic solutions with modulated rotating waves (Blackburn &
Lopez 2000, 2002). Lopez et al. (2002) have varied s between 0 and −0.8, for Γ = 0.5
and have observed rotating waves with azimuthal wavenumbers 4 and 5, as well as
more complicated dynamics.

Turbulence in von Kármán flows with Γ = O(1) and s = −1 has been the subject of
a number of experimental investigations, primarily because this system is maximally
efficient in forcing turbulence when the disks are exactly counter-rotating. Using
different working fluids such as air (Labbe, Pinton & Fauve 1996), water (Cadot,
Douady & Couder 1995), helium (Belin et al. 1996), gallium (Odier, Pinton & Fauve
1998) and sodium (Marié et al. 2000), the counter-rotating set-up can reach very
high Reynolds numbers, up to Re ' 107. Turbulence in such flows has been studied
from a statistical viewpoint, focusing on probability density functions of the velocity
increments or pressure signal, and Kolmogorov scalings and departure from them.
Other studies have had a mechanistic viewpoint, focusing on tube-like high-vorticity
regions on a small-vorticity sea background, and coherent structures such as small-
scale worms (Belin et al. 1996) and integral-scale tubes (Douady, Couder & Brachet
1991). Even in these highly turbulent flows, long-lived vortices were observed which
could be ‘ghosts’ of the coherent structures existing for smaller Reynolds numbers
(Cadot 1995; La Porta et al. 2000).

Nonetheless, the early stages of transition for parameter values Γ = O(1) and
s = −1 have not been previously considered. The main purpose of this paper is to
study the first steps towards turbulence of the counter-rotating von Kármán swirling
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Figure 1. (a) Schematic diagram of the flow configuration in non-dimensionalized units. (b) Shear
layer and (c) recirculation zones due to Ekman pumping.

flow. The outline of the paper is as follows: in § 2, the problem is formulated, along with
its symmetries and associated normal form; § 3 summarizes the numerical techniques.
In § 4, we report the thresholds for bifurcations from the basic axisymmetric state; in
§ 5, we describe in detail the sequence of steady and time-dependent states observed,
placing it in the context of the normal form. In § 6, we discuss a possible physical
mechanism for the instability; § 7 contains our conclusion.

2. Formulation of the problem
2.1. Geometry

We consider in this paper the flow of an incompressible fluid of kinematic viscosity ν,
in a cylindrical cavity of radius R and height H . The motion is generated by rotation
of the upper and lower disks at constant angular velocity Ωup and Ωlow , respectively.
The flow thus depends on three non-dimensional parameters. Using R as the length
scale and ΩlowR as the velocity scale selects two of these parameters: the aspect ratio

Γ = H/R, (2.1a)

and the Reynolds number

Re ≡ ΩlowR2/ν. (2.1b)

The third parameter can be taken to be the angular velocity ratio

s ≡ Ωup/Ωlow. (2.1c)

Note that consideration may be restricted to values |s| 6 1, since values |s| > 1 can
be mapped to |s| 6 1 by inverting the upper and lower disks. We study the case of
aspect ratio Γ = 2 and angular velocity ratio s = −1. That is, the height between the
two disks is equal to the diameter of the disks, and the disks rotate at exactly equal
and opposite angular velocities. The flow configuration is sketched in figure 1(a). The
consequences of these choices will be discussed below. Throughout the paper, time is
given in units of the rotation period, i.e. in units of 1/(2πΩlow).

2.2. Boundary conditions

We denote by (u, v, w) the components of the velocity v in cylindrical coordinates
(r, θ, z). The boundary conditions on the cylinder walls are:

v = 0 on the stationary sidewall at r = 1, (2.2a)

v = ∓reθ on the rotating disks at z = ± 1
2
Γ . (2.2b)



54 C. Nore, L. S. Tuckerman, O. Daube and S. Xin
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Figure 2. The basic state at Re = 300: (a) Contours of v at θ = π (left) and vector field (u, w)
at θ = 0 (right): positive (negative) values of v are indicated by solid (dashed) curves. Note that
v changes sign under reflection in z. (b) Contours of radial (left), azimuthal (middle) and vertical
(right) velocities at z = Γ/4 (top) and z = −Γ/4 (bottom). The views are seen from above. Note
that u is invariant under reflection in z, whereas v and w change signs. The maximum absolute
values of u, v, and w are 0.13, 1, and 0.11, respectively.

Boundary condition (2.2a) is, in fact, an additional specification of the flow under
study. Rotating disk flows studied experimentally often specify a sidewall which
instead rotates with one of the disks; other flows studied numerically may specify a
sidewall whose angular velocity varies linearly with height between those of the upper
and lower disks.

2.3. Symmetries

The basic flow consists of a dominant azimuthal shear layer produced by the counter-
rotating lower and upper disks, as was first predicted by Batchelor (1951). There are
also second-order recirculation zones due to Ekman pumping (figures 1 and 2a) in
the neighbourhood of each disk. The two zones of the meridional flow meet at the
mid-plane and converge to form an inwardly directed radial jet (figure 2a).

The configuration and basic state are invariant under rotations Sθ0
about the z-axis,

i.e. they are axisymmetric. The case s ≡ Ωup/Ωlow = −1, in which the angular velocities
of the upper and lower disks are equal and opposite, is unique among the rotating
disk configurations in possessing an additional symmetry of rotation of π about any
horizontal axis, in particular the x-axis, which we denote by Rπ. This rotation is
equivalent to the combined action of reflections in θ = 0 and in z = 0. We define
these symmetry operations by:

Sθ0

 u
v
w

 (r, θ, z) ≡
 u

v
w

 (r, θ + θ0, z), (2.3a)

Rπ

 u
v
w

 (r, θ, z) ≡
 u
−v
−w

 (r,−θ,−z). (2.3b)

The crucial point is that Rπ does not commute with Sθ0
and hence, the group generated

by these operators is isomorphic to O(2), even though the rotation Rπ is not the usual
reflection in θ. These symmetries are illustrated in figure 2, which shows the basic
flow at Re = 300.
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The choice s = 1 of exactly co-rotating disks leads to the symmetry group SO(2)×
Z2: the geometry and basic flow are invariant under rotations in θ and reflections
in z. Since these operations commute, this group is not equivalent to O(2). All other
choices of s lead to the symmetry group SO(2).

2.4. Normal form

We now discuss the consequences of the choice Γ = 2 of aspect ratio. We have
found that, in this case, the first instabilities to non-axisymmetric flow have azimuthal
wavenumbers m = 1 and m = 2. Small azimuthal wavenumbers can be expected if the
horizontal scale of the instability is approximately set by the vertical distance between
the upper and lower boundaries which drive the instability (as is the case, for example,
in Rayleigh–Bénard convection). (In § 6, we will argue that the vertical distance setting
the scale of the instability is, in fact, the smaller thickness characterizing the equatorial
shear layer.) We would expect a configuration of larger radius to favour instabilities
with higher wavenumbers, since the circumference is then much larger than the height,
and this is indeed the case, e.g. Marques & Lopez (2001), Marques et al. (2002), Lopez
et al. (2002), Gelfgat et al. (2001).

Our calculations show that, for our aspect ratio Γ = H/R = 2, the basic state
loses stability to non-axisymmetric modes m = 1 and m = 2 at Reynolds numbers
which are fairly close: ReM = 349 and ReP = 401, respectively. Because of this, our
hydrodynamic system is near the 1:2 resonance in the presence of O(2) symmetry,
a codimension-two bifurcation whose normal form was put forth and studied by
Buzano & Russo (1987) and by Dangelmayr (1986) and investigated in detail by
Armbruster, Guckenheimer & Holmes (1988) and by Proctor & Jones (1988).

Let z1 = x1 + iy1 and z2 = x2 + iy2 represent complex amplitudes of the m = 1
and m = 2 modes. Here and throughout the paper, the use of subscripts indicates
that xj, yj , zj refer to mode amplitudes in a normal form, rather than to coordinate
directions. The symmetry operations Sθ and Rπ are represented in the usual way by:

Sθ(z1, z2) = (eiθz1, e
2iθz2), (2.4a)

Rπ(z1, z2) = (z1, z2). (2.4b)

The four-dimensional system of evolution equations for (z1, z2) is formulated to
contain all terms up to cubic order which are compatible with (2.4), i.e. equivariant
under the group generated by (2.4a) and (2.4b) (Golubitsky, Stewart & Schaeffer
1988; Crawford & Knobloch 1991):

ż1 = z1z2 + z1(µ1 + e11|z1|2 + e12|z2|2), (2.5a)

ż2 = ±z2
1 + z2(µ2 + e21|z1|2 + e22|z2|2), (2.5b)

where µj and ejk are real parameters.
Steady solutions of (2.5) are the trivial solution z1 = z2 = 0, the pure modes P

satisfying z1 = 0, z2 6= 0, and the mixed modes M satisfying z1 6= 0, z2 6= 0. As can be
seen from (2.5), there are no steady solutions satisfying z1 6= 0, z2 = 0. It is for this
reason that states M are termed mixed modes. We see from (2.4b) that the solutions
which are invariant under Rπ are those with y1 = y2 = 0.

Among all cases of m : n mode interaction, the 1 : 2 resonance is distinguished
for the following reason. Mode interactions between competing instabilities typically
occur between neighbouring wavenumbers, m and m + 1. The branches arising at
these bifurcations contain harmonics of the fundamental wavenumbers. The pair
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m : m+ 1 = 1 : 2 is the only one in which one wavenumber is the first (and hence
strongest) harmonic of the other: i.e. m+ 1 = 2m. The quadratic terms in (2.5) attest
to the importance of the 1 : 2 mode interaction. We note that, except for the cases
1 : 2 and 1 : 3, all of the equations describing mode interactions between wavenumbers
m and n are identical when truncated to cubic order, and consist of equations (2.5)
with the quadratic terms omitted. (The equations describing the 1 : 3 case contain
two types of cubic term.) See Dangelmayr (1986) and Golubitsky et al. (1988) for a
derivation.

Travelling-wave solutions are best described by transforming the normal form
amplitudes to polar coordinates via zj = rj exp iθj . Again, the use of subscripts on rj , θj
indicates that these are normal form amplitudes rather than coordinate directions.
Defining φ ≡ 2θ1 − θ2, the system (2.5) can be rewritten as the three-dimensional
system:

ṙ1 = r1r2 cosφ+ r1(µ1 + e11r
2
1 + e12r

2
2), (2.6a)

ṙ2 = ±r2
1 cosφ+ r2(µ2 + e21r

2
1 + e22r

2
2), (2.6b)

φ̇ = − (2r2 ± r2
1/r2

)
sinφ. (2.6c)

Steady solutions of (2.5) correspond to fixed points of (2.6) with φ = 0 or π. Travelling-
wave solutions of (2.5) are fixed points of (2.6) with φ 6= 0, π in which φ remains
constant but θ1 and θ2 vary linearly with time such that 2θ̇1 = θ̇2 and 2r2

2 = r2
1.

Armbruster et al. (1988) conducted an exhaustive analysis of the behavior of the
normal form (2.5), analysing the dependence of the possible solutions on the values of
µj, ejk and, crucially, on the sign in (2.5b) or (2.6b)–(2.6c). In particular, for the negative
sign, they showed that there exists a rich variety of distinct dynamical states, including
travelling waves, modulated travelling waves and, most remarkably, heteroclinic cycles
connecting two pure mode states which persist over a range of parameter values. The
parameters ejk are considered as fixed and µ1 and µ2 control instability of the
trivial state to mixed and pure modes; µ1 = µ2 = 0 is the codimension-two point
at which both instabilities occur simultaneously. A similar analysis was carried out
simultaneously by Proctor & Jones (1988), who derived the normal form (2.5) as
amplitude equations for convection in two superimposed fluid layers, heated from
below and separated by a conducting plate. The exotic and ubiquitous nature of the 1:2
resonance has continued to inspire many other studies involving further mathematical
analysis (Kevrekidis, Nicolaenko & Scovel 1990; Porter & Knobloch 2001; Chossat
2001) and applications to physical phenomena such as turbulent boundary layers
(Aubry et al. (1988)) and thermal convection (Cox 1996; Mercader, Prat & Knobloch
2001).

Our study of the von Kármán flow leaves no doubt that it is remarkably well
described by the normal form (2.5) in the negative sign case. The parameters µ1 and
µ2 can be considered to be control parameters embodying some combination of Re
and Γ . Our study, with Γ fixed and Re varied, corresponds to traversing a path
in the µ1, µ2 parameter space. We find mixed modes, pure modes, travelling waves,
modulated travelling waves, and heteroclinic cycles linking two different pure mode
states. We have studied this sequence of steady and time-dependent states and the
transitions between them by means of direct computations of the fully nonlinear
three-dimensional Navier–Stokes equations. We have been able to extract additional
dynamical information by employing linearization and symmetry restrictions. These
numerical tools are described in the next section.
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3. Numerical techniques
3.1. Nonlinear non-axisymmetric evolution

Our main computational tool is a code which carries out time integration of the
nonlinear non-axisymmetric Navier–Stokes equations.

∇ · v = 0, (3.1a)

∂v

∂t
+ (v · ∇)v = −∇p− 1

Re
∇× ∇× v. (3.1b)

(The diffusion terms are written in curl(curl) form, which allows for the use of
the mimetic curl operator which will be discussed below.) In this section, we outline
only the main features of our code. More details can be found in Barbosa &
Daube (2001).

3.1.1. Spatial discretization

We expand the velocity components and pressure in truncated Fourier series over
Nθ modes, the coefficients of which are discretized in the (r, z)-planes. The main
difficulty associated with the use of cylindrical coordinates is the treatment of the
r = 0 axis. This is dealt with by using mimetic finite difference operators (Hyman &
Shashkov 1997), meaning that they satisfy the discrete analogues of the usual vector
analysis relations. The main ingredients of this discretization are:

A staggered MAC uniform grid is used in the (r, z)-plane. Two kinds of cells are
used, one for cells far from the axis, the other for cells having an edge r = 0. Both
are displayed in figure 3.

The first-order discrete operators divh and curlh are defined by means of a discrete
quadrature by the trapezöıdal rule of Gauss’ theorem over a cell and of Stokes’
theorem along suitable loops.

Discrete counterparts of the standard inner products of the continuum case are
defined on the sets of discrete scalar and vector functions.

The discrete gradient operator is defined as the negative adjoint of the discrete
divergence operator with respect to these discrete inner products.

The nonlinear terms are discretized in such a way as to be energetically neutral in
the sense of the discrete inner product.

The discrete vector diffusion operator ∇2
h is defined as two applications of the

discrete curl (−∇h × ∇h×), using the fact that the discrete divergence vanishes.
Fast direct solvers based upon a partial diagonalization technique (Haidvogel &

Zang 1979) in the z-direction are used to solve the resulting discrete systems.

3.1.2. Temporal discretization

We write the Navier–Stokes equations schematically as

∂v

∂t
= L+N , (3.2)

where L represents the linear viscous terms and N the nonlinear terms. Equation
(3.2) is approximated at timestep n + 1 by the following second-order time-stepping
scheme (Vanel, Peyret & Bontoux 1986):

3vn+1 − 4vn + vn−1

2∆t
= Ln+1 + 2N n −N n−1 + O(∆t2) (3.3)
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Figure 3. The MAC grid: the regular cells, shown in (a), are parallelipipedic while the axis cells,
shown in (b), are triangular. Velocity components are defined at the middle of the faces while the
vorticity components are defined at the middle of the sides.

Equation (3.3) yields a Helmholtz problem for (vn+1, pn+1):(
3Re

2∆t
I + ∇× ∇×

)
vn+1 + ∇pn+1 = Sn,n−1. (3.4)

The source terms Sn,n−1 contain all the quantities which are evaluated at previous
time steps.

3.1.3. Velocity–pressure coupling

The usual difficulty which arises in numerical integration of the incompressible
Navier–Stokes equations lies in the velocity–pressure coupling through the vanishing
divergence of the velocity. This is handled by means of an incremental projection
method (Goda 1979):

Prediction step: Find a provisional velocity field v∗ which satisfies:(
3Re

2∆t
I + ∇× ∇×

)
v∗ = −∇pn + Sn,n−1,

with the no-slip boundary conditions.
Projection step: Project v∗ on the space of divergence-free vector fields. This is

achieved by setting vn+1 = v∗ + ∇φ. The auxiliary function φ is computed by solving
a Poisson equation with Neumann boundary conditions:

−∇ · (∇φ) = ∇ · v∗,
∂φ

∂n
= 0 on the boundary,

and the pressure pn+1 is classically recovered as:

pn+1 = pn −
(

3φ

2∆t
+
∇ · v∗
Re

)
.

3.2. Steady states and linear stability

Our goal is to carry out a full bifurcation analysis of the von Kármán flow for
our parameter range. To do this, we have used several computational techniques in
addition to that described in § 3.1.
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3.2.1. Axisymmetric steady states

The axisymmetric steady states are not computed using the code described in § 3.1.
Instead, the equations are written in the streamfunction–vorticity formulation and
the influence matrix technique is used to satisfy the no-slip boundary conditions. The
steady states can then be calculated via Newton’s method with Stokes preconditioning,
as described by Mamun & Tuckerman (1995). The steady states obtained in this way
are more accurate than those that would be obtained by time-integration. GMRES
(Saad & Schultz 1986) is used to solve the linear system required by each Newton
iteration. GMRES is an example of a matrix-free method, requiring only computation
of the action of the linearized operator on a vector. A matrix–vector multiplication
is equivalent to taking one timestep of the linearized Navier–Stokes equations; see
Mamun & Tuckerman (1995) for more details.

3.2.2. Non-axisymmetric steady states

Our non-axisymmetric steady states are obtained by time-integration of the nonlin-
ear non-axisymmetric Navier–Stokes equations as described in § 3.1. Normally, only
stable steady states would be accessible to time-integration. However, most of our
bifurcations are symmetry-breaking. We can therefore calculate unstable steady states
by imposing a symmetry. We have done this in particular to calculate the branch of
pure mode states which is the second to bifurcate from the axisymmetric branch. The
Fourier series for the pure mode states contain only even azimuthal wavenumbers.
Such flows constitute an invariant subspace for the Navier–Stokes equations, corre-
sponding to the fact that z1 = 0 is preserved in the normal form (2.5), and the pure
mode states are stable when integration is carried out in this subspace. (In contrast,
the mixed mode states contain both even and odd wavenumbers.) Another branch
of unstable steady states which we have been able to calculate is the mixed-mode
branch after it becomes unstable to travelling waves. Since the eigenvector responsible
for this bifurcation is antisymmetric with respect to our reflection operator Rπ, the
mixed-mode branch remains stable when integration is carried out in the subspace of
flows symmetric under Rπ.

3.2.3. Linear stability

Linear stability analysis of axisymmetric and non-axisymmetric steady states is
carried out by temporal integration of the Navier–Stokes equation linearized about
the steady state. That is, the governing equations (3.1) are modified to read:

∇ · v = 0, (3.5a)

∂v

∂t
+ (V · ∇)v + (v · ∇)V = −∇p− 1

Re
∇× ∇× v, (3.5b)

where V is a previously computed steady state. This is equivalent to carrying out the
power method on the approximate exponential of the Jacobian operator (Mamun &
Tuckerman 1995). The power method computes the dominant eigenvalue (of largest
magnitude) of the approximate exponential operator, which is the leading eigenvalue
(of largest real part) of the Jacobian. The leading eigenvalue is the unstable or least
stable eigenvalue and is responsible for the bifurcations undergone by the steady
state. Long-time integration yields the leading eigenvector and its growth rate, the
leading eigenvalue.

In general, the power method computes only a single leading eigenvalue. How-
ever, for an axisymmetric state, eigenvectors corresponding to different azimuthal
wavenumbers m belong to different invariant subspaces which are decoupled from
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one another. Therefore integration of the linearized equations from an arbitrary ini-
tial condition is equivalent to carrying out Nθ integrations in parallel, one for each
Fourier component m. The leading eigenvector corresponding to each m is merely the
corresponding Fourier component of the field resulting from long-time integration,
and the leading eigenvalue corresponding to m is its growth rate.

Linearized evolution about non-axisymmetric steady states couples different Fourier
components; the eigenvectors are superpositions of Fourier modes. However, for
steady states possessing other symmetries, there exist other subspaces which are
invariant under linearized evolution; the eigenvectors necessarily belong to these
invariant subspaces. In particular, for a steady state which is symmetric under Rπ,
all eigenvectors are either symmetric or antisymmetric. In terms of the normal form
(2.5), this corresponds to the fact that the eigenvectors of steady states of the
form (x1, y1, x2, y2) = (x1, 0, x2, 0) are either of the form (x1, 0, x2, 0) or of the form
(0, y1, 0, y2). The symmetric eigenvectors can be extracted from the result of linearized
evolution by computing the symmetric part {(I+Rπ)/2} (u, v, w) and the antisymmetric
eigenvectors by computing {(I − Rπ)/2} (u, v, w). Thus, two leading eigenvalues can
be extracted from the power method.

Similarly, we can make use of the symmetry of the pure mode states, whose Fourier
series contain only even wavenumbers. Flows containing only even or only odd Fourier
components are invariant under linearized evolution about the pure mode states. The
eigenvectors thus belong to these invariant subspaces. Even and odd eigenvectors
are extracted after long-time integration by separating the even and odd Fourier
components. Since the phase of the pure mode states can in addition be chosen so as
to make them symmetric under Rπ, a total of four leading eigenvectors can be extracted
from a single long-time integration corresponding to the four possible combinations
of even and odd, reflection-symmetric and reflection-antisymmetric. These correspond
to the four components of the normal form (2.5). It is not possible to do this for the
mixed modes, since their eigenvectors are superpositions of Fourier modes with both
even and odd wavenumbers. In order to calculate four leading eigenvectors of the
mixed modes, we instead used ARPACK (Lehoucq, Sorensen & Yang 1998) or our
own implementation of the Arnoldi method (Mamun & Tuckerman 1995).

3.3. Code validation and resolution

Our code was tested by comparing our linearized computations with the thresholds
computed by Gelfgat et al. (2001) for the case Γ = 1 and s = 0, for which the first
instability is to an m = 2 mode. We give some partial results which may be found
in Barbosa & Daube (2001). Figure 4 shows the variation of the threshold with
the resolution Nr = Nz = N and Nθ = 32. A parabolic fit gives Rem=2 = 2473, to
be compared with 2471 found by Gelfgat et al. (2001) using spectral methods. The
threshold for N = 101 is 2447, differing by 1% from the spectral result.

In the results reported in this paper, all computations are performed with Nr = 101,
Nθ = 32, Nz = 201 unless otherwise specified and Γ = 2 and s = −1. This resolution
was checked to be sufficient for the Reynolds number range under study. The timestep
is ∆t = 10−2 nondimensional time units and a typical run of 400 disk rotations takes
3 hours on a NEC-SX5 computer.

4. Primary bifurcations
We begin by determining the critical Reynolds numbers at which the basic ax-

isymmetric state loses stability. The branch of steady states with m = 1 is the first
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Figure 4. Critical Reynolds number for Γ = 1, s = 0 and azimuthal wavenumber m = 2.
A parabolic fit gives Rem=2 = 2473, in excellent agreement with Gelfgat et al. (2001).
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Figure 5. Growth rate of azimuthal energy components 0, 1, 2 as a function of Re. The crossing
of the Reynolds number axis defines linear thresholds ReM = 349.0 and ReP = 401.5.

to bifurcate from the basic state as Re increases, followed by the pure modes m = 2.
The thresholds are determined by plotting the growth rate of each azimuthal energy
component as a function of Re (figure 5). Throughout the paper, we report thresholds
to one decimal digit in the Reynolds number the first time they are mentioned and
also whenever increased precision is significant. Otherwise, we report thresholds as
integer values of the Reynolds number.

The first bifurcation occurs at ReM = 349.0 and the second at ReP = 401.5 ' 401.
Figure 6 shows vertical velocity contours of the m = 1 eigenvector at Re = 355 and
the m = 2 eigenvector at Re = 410, just above the bifurcation thresholds. Both of
these eigenvectors are invariant under the reflection symmetry Rπ. This can be easily
checked at z = 0 where the negative contours for 0 < θ < π correspond to the positive
contours for π < θ < 2π. The w = 0 contour in this plane is straight and horizontal.
The action of Rπ relating contours at z = Γ/6 and z = −Γ/6 is more complicated:
take a feature in the Γ/6 plane, flip it (reflect in θ), change its sign, and find it in the
−Γ/6 plane.
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(a) (b)

Figure 6. Vertical velocity contours at z = Γ/6 (top), z = 0 (middle), and z = −Γ/6 (bottom) of
the eigenvectors of the unstable basic state: (a) m = 1 at Re = 355, (b) m = 2 at Re = 410. These
non-axisymmetric eigenvectors retain Rπ symmetry: at z = 0, the negative (dashed) contours for
0 < θ < π correspond to the positive (solid) contours for π < θ < 2π. The action of Rπ between
Γ/6 and −Γ/6 is as follows: take a feature in the Γ/6-plane, flip it (reflect in θ), change its sign
and find it in the −Γ/6-plane.

The bifurcations are circle pitchforks, involving a two-dimensional eigenspace and
creating a ‘circle’ of steady states parametrized by angular phase θ0. In addition,
standard analysis of the circle pitchfork under O(2) symmetry, and, more generally
the equivariant branching lemma (Golubitsky et al. 1988) dictate that the nonlinear
states are also symmetric under Rπ. These features are a consequence of the exact
counter-rotation of the top and bottom disks (s = −1). For any case with |s| 6= 1,
the symmetry group would be SO(2) and a bifurcation breaking azimuthal symmetry
would generically lead to rotating waves, cf. Crawford & Knobloch (1991).

Both bifurcations are supercritical, as can be determined by temporally integrat-
ing the system near the threshold from the basic state (Henderson & Barkley
1996). Figure 7 shows that the linear phase for the transition to the mixed mode
at Re = 355 (or to the pure mode at Re = 405) extends to t ' 300 (or to
t ' 400) and that, subsequently, when nonlinear effects come into play, the slope
decreases. The w velocity shown in figure 7 can be thought of as representing
the amplitude a of the bifurcating mode in a normal-form model ȧ = µa + αa3.
In both cases the fact that the slope decreases after the linear phase of the evolu-
tion shows that α is negative, thus proving that the pitchfork bifurcation is super-
critical.
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Figure 7. Evolution of log(w(1/2,0,0)) from the basic state. Initial phase of exponential growth is
followed by a nonlinear phase of slower growth, indicating a supercritical bifurcation in both cases.
(a) Transition to mixed mode at Re = 355. (b) Transition to pure mode at Re = 405.
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Figure 8. Growth rate of azimuthal energy components 0 6 m 6 7 as a function of Re. Note that,
in the range 0 6 Re 6 500, only m = 1 and m = 2 modes bifurcate.

Thresholds for m = 1, 2 differ by less than 1% for two resolutions (Nr,Nz) =
(101, 201) and (Nr,Nz) = (161, 321).

5. Sequence of steady and time-dependent states
As a guide to our observations, we begin by showing in figure 9 a schematic view

of the sequence of steady and time-dependent states observed. Stable branches are
indicated by solid curves and unstable branches by dashed curves. We will describe
in detail each of the states encountered, i.e. mixed modes, travelling and modulated
waves, pure modes, and finally, heteroclinic cycles. This ordering is essentially (but
not entirely) consistent with the order in Reynolds number in which these states are
observed.

5.1. Mixed modes

The branch of mixed modes M bifurcates from the basic state at ReM = 349. It
loses stability at ReTW = 411.6 ' 412 and ceases to exist at ReMP = 418.4 ' 418
via bifurcations which we will discuss in later sections. The symmetries of the mixed
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Figure 9. Theoretical bifurcation diagram as a function of Re. Stable solutions are indicated by
solid lines, unstable ones by dashed lines and shaded lines denote attracting heteroclinic cycles.
Dot-dashed lines indicate branches which we have not computed. Thresholds are indicated by dots:
ReM = 349, ReP ' 401, ReTW ' 412, ReMP ' 418, ReMWH = 427.3, ReHet = 427.4, ReM′P ' 452.

modes M can be observed in figure 10a, showing contours of the vertical velocity
w at z = −Γ/6, 0, and Γ/6. Contours of w in the z = 0 plane are especially useful
in depicting our nonaxisymmetric flows, since w = 0 in this plane for the basic
axisymmetric flow. The mixed mode retains the Rπ symmetry.

Physically, the mixed mode state M can be viewed as the result of the first insta-
bility of the equatorial shear layer produced by the counter-rotating disks. Azimuthal
disturbances saturate and engender a ‘vortex monopole’ shown in figure 10(b, d ). The
vortex centre is an elliptic point located near r = 1, θ = π, z = 0; the corresponding
hyperbolic point is located diametrically opposite at r = 1, θ = 0, z = 0 (see fig-
ure 10d ). The vector field (u, w) and contours of v are symmetric about the mid-plane
in the meridional planes θ = 0, π (figure 10c, top) but deformed in the meridional
planes perpendicular to the vortex θ = π/2, 3π/2 (figure 10c, bottom). The radially
inward jet associated with the recirculation zones of the meridional plane (figure 10c)
acquires a wavy shape and intensity. Contours of the radial velocity u resemble those
of the radial vorticity ωr in figure 10(d ), meaning that the inflow jet has a maximum
at the vortex centre.

The mixed mode branch is destroyed via a pitchfork bifurcation onto the pure mode
branch at ReMP = 418, in accordance with the analysis of Armbruster et al. (1988) and
of Proctor & Jones (1988). Thus, the mixed mode branch evolves from an entirely
m = 1 harmonic content at ReM = 349 to an entirely even m = 2, 4, . . . harmonic
content at ReMP = 418, justifying the nomenclature of mixed mode.

The bifurcations undergone by the mixed mode state are accompanied by changes
of sign of the leading eigenvalues. Figure 11 shows the leading eigenvalues of the
mixed mode state over the range of its existence ReM = 349 6 Re 6 ReMP = 418.4,
preceded by those of the basic state for Re 6 ReM = 349. These meet continuously
(but not smoothly) at ReM because the mixed mode and basic states are identical at
the threshold of the mixed mode branch.

For the basic state, an axis of symmetry has not been selected and the notion of
reflection symmetry is meaningless. Eigenvectors with m 6= 0 instead are grouped into
two-dimensional eigenspaces. Thus, for the basic branch, eigenvalue λ1, associated with
Fourier mode m = 1 and eigenvalue λ2, associated with m = 2, each correspond to two
degenerate eigenvectors. The degeneracy is lifted when λ1 crosses zero at ReM = 349:
any mixed mode state has a symmetry axis and its eigenvectors can be classified
as either symmetric or antisymmetric, each associated with different eigenvalues
(which we also term symmetric or antisymmetric). However, the Fourier modes cease
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Figure 10. The mixed mode state at Re = 355, near the bifurcation at ReM = 349. (a) Vertical
velocity contours at z = Γ/6 (top), z = 0 (middle), and z = −Γ/6 (bottom). The views are seen
from above. (b) Vector field (v, w) and contours of ωr showing a ‘vortex monopole’ at r = 0.75 and
θ = π. (c) Vector field (u, w) at θ = 0 and contours of v at θ = π through the vortex (top) and at
θ = π/2, 3π/2 perpendicularly to the vortex (bottom). (d ) Unfolded vector field (v, w) and contours
of ωr at r = 0.75. The vortex is centred on the elliptic point near θ = π, z = 0 and diametrically
opposite from the hyperbolic point near θ = 0, z = 0.

to be separate: each eigenvector about a mixed mode contains components of all
wavenumbers.

The eigenvalues emanating from zero at ReM are standard features of any circle
pitchfork bifurcation. The symmetric eigenvector resembles the difference between the
mixed mode and the base flow; its eigenvalue becomes negative with increasing Re, as
it is stabilized by the circle pitchfork. The antisymmetric eigenvector corresponding
to rotation in θ is a neutral mode whose eigenvalue remains zero.

The eigenvalue λ2 also splits into symmetric and antisymmetric parts. Figure 11
shows that the symmetric eigenvalue joins with the other leading symmetric eigenvalue
at Re ≈ 365 to form a complex conjugate pair. (This behaviour is also found in the
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Figure 11. (a)The four/five most dangerous eigenvalues as functions of Re about the basic state
for Re 6 ReM = 349 and about the mixed mode state for ReM = 349 6 Re 6 ReMP = 418.4. For
the basic state, the symbols 1 and 2 refer to the two-dimensional eigenspace corresponding to m = 1
and m = 2, respectively. For the mixed mode state, eigenvectors are classified as symmetric (S) or
antisymmetric (A) under Rπ. The mixed mode branch is created at a circle pitchfork bifurcation
at ReM , where the m = 1 eigenvalue splits into bifurcating (S , +) and marginal (A, ×) modes. Of
the two branches resulting from the m = 2 eigenvalue, one (S , �) merges with the other symmetric
eigenvalue to become a complex conjugate pair at Re ≈ 365; their real part is shown. The mixed
mode branch loses stability when the other eigenvalue (A; ∗) crosses zero at ReTW = 412, and
is destroyed when a fifth eigenvalue (S ; �) crosses zero at ReMP = 418.4. The fifth eigenvalue
branch does not cross any of the others, although it coincides with the real part of the complex
conjugate branch at Re = 405. (b) An enlargement of the five eigenvalues near ReMP , showing that
the complex conjugate pair splits into a real pair over the range 418 6 Re 6 418.4.

normal form (2.5) for some parameter values.) The antisymmetric eigenvalue continues
to increase with Re until it crosses zero at ReTW = 412 at a drift pitchfork bifurcation
discussed in the next section.

Another eigenvalue, this one symmetric, necessarily traverses zero at ReMP = 418.4.
The unexpected feature of figure 11 is that this eigenvalue is not the continuation of
any of the four leading eigenvalues at ReM . Instead, at Re ≈ 405, a fifth eigenvalue
crosses the real part of the complex conjugate pair, continues to increase, and is
finally responsible for the pitchfork bifurcation which destroys the mixed mode
branch at ReMP . This sequence of events is confirmed by the enlargement in figure 11,
establishing that the symmetric eigenvalues involved in the generation of the mixed
and pure modes remain negative at ReMP . This is discussed further in § 5.5.

5.2. Travelling waves and modulated waves

The mixed mode branch loses stability at ReTW = 411.6 ≈ 412, giving rise to a pair
of travelling waves (TW), one rotating clockwise and the other counterclockwise. A
clockwise rotating wave is represented in figure 12(a). It can be checked that the Rπ
symmetry has been broken because there is no straight zero value contour in the
z = 0 plane of figure 12(a). Because the drift pitchfork breaks reflection symmetry, we
have been able to follow the unstable branch of mixed mode states above ReTW by
imposing the Rπ symmetry at each timestep, as explained in § 3.2.3. For example, the
corresponding unstable mixed mode state at Re = 415 is represented in figure 12(b).
We can compute the linear eigenvectors of the unstable mixed mode states which are
responsible for the TW instability in this Reynolds number range. The eigenvector
responsible for the TW state at Re = 415 appears in figure 12(c). Its antisymmetry
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(a) (b) (c)

Figure 12. Vertical velocity contours at z = Γ/6 (top), 0 (middle), −Γ/6 (bottom) at Re = 415 for
(a) the TW state, (b) the (unstable) M mode state and (c) the antisymmetric eigenvector responsible
for the TW instability. In (a) the Rπ symmetry has been broken because there is no straight w = 0
contour in the z = 0 plane. In (b), the unstable M mode is symmetric. In (c), the antisymmetry
is manifested by the fact that w does not change sign when it is flipped between z = Γ/6 and
z = −Γ/6.

is manifested by the fact that w does not change sign under Rπ, meaning that
w(r, θ, z) = w(r,−θ,−z).

We have computed the nonlinear rotating wave states for several Reynolds numbers.
Figure 13 shows that the inverse of the period is proportional to

√
Re− ReTW , with

the critical Reynolds number for the drift bifurcation ReTW = 411.6 determined by
extrapolation. This relation confirms that the bifurcation is a drift pitchfork and
establishes that it is supercritical. The energy of each Fourier component of the
travelling waves is constant because the pattern is steady in the frame rotating with
the precession wavespeed.

The TW lose stability at a Hopf bifurcation whose threshold ReMWH = 427.3 is
determined by fitting the initial temporal evolution of the energy to the function

E(t) = exp(σt) cos(ω(t− t0)). (5.1)

Figure 14 shows the frequency ω and the growth rate σ as a function of Re. This
Hopf bifurcation should produce modulated waves (MW) at ReMWH = 427.3. In our
case, these occur in a very reduced range of Reynolds numbers. Figure 15 shows the
stable oscillations in energy typical of modulated waves at Re = 427.35. Figure 14
shows that the modulation frequency is 4–5 times that of the underlying travelling
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Figure 13. Square of the rotating wave frequency as a function of Re. A straight-line fit indicates
a drift pitchfork at ReTW = 411.6 determined by extrapolation.
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Figure 14. Hopf bifurcation from travelling waves to modulated travelling waves. (a) Frequency
ω of energy E(t) associated with Hopf bifurcation (solid line) and of underlying travelling waves
(dashed line). The modulation frequency is about five times that of the travelling waves. (b) Growth
rate σ of energy. The crossing of the Reynolds number axis determines ReMWH = 427.3 for Hopf
bifurcation from travelling waves.

waves. In the velocity signal of figure 15, the modulation is barely visible as a slight
variation in shape from one oscillation to the next.

Since our methods do not permit us to follow the TW branch past ReMWH , we
cannot be sure of its eventual fate. The simplest outcome, illustrated in the analysis
of Armbruster et al. (1988) and in our figure 9 as ReTW ′ , is that the TW branch
ceases to exist by joining another mixed mode state M ′ which we will discuss in later
sections.

5.3. Pure modes

As stated in § 4, the pure mode branch is created at a circle pitchfork bifurcation
to m = 2 eigenmodes at ReP = 401. Since the basic branch is unstable to m = 1
eigenmodes at this Reynolds number, the pure mode branch is unstable when it first
appears. However, as explained in § 3.2.3, this unstable pure mode branch can be
followed from its first appearance at ReP = 401 by setting all odd Fourier modes in
each velocity component to zero at each time step. The pure mode branch becomes
stable at ReM ′P = 452 via a sequence of bifurcations which we shall discuss below.
A stable pure mode state at Re = 500 is shown in figure 16(a). (Pure mode states at
lower Reynolds numbers resemble that shown in figure 16.) It is reflection-symmetric,
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Figure 15. Time series corresponding to the modulated waves at Re = 427.35. (a) Velocity
w(1/2, 0, 0). (b) Energy components m = 1 (solid line) and m = 2 (dashed line). The modulation can
be seen as the slight variation of the local minima in the velocity signal. The energy components
oscillate in phase opposition. The modulation period (seen in the energies) is much smaller than
that of the underlying waves (seen in the velocity signal).

i.e. invariant under Rπ, as illustrated in figure 16(a). The structure consists of the
roll-up of the equatorial shear layer in the form of two co-rotating vortices, as
shown in figure 16(b). Therefore, along the equatorial circle, there are two elliptic
points around which the flow rotates, separated by two hyperbolic points. These
vortices are confined near the sidewall and are manifested in the bulk as a waviness
in the shear layer. The inward jet associated with the recirculation zones shown in
figure 16(c) follows the wavy shear layer; i.e. contours of u resemble those of ωr in
figure 16(d ).

Figure 17 shows the four leading eigenvalues for the basic state for 340 6 Re 6 401
and for the pure mode states for ReP = 401 6 Re 6 452 = ReM ′P . Figure 17 shares
many of the features of figure 11. The degeneracy of the eigenvalues λ1 and λ2 of the
basic state is lifted at Re > ReP , where they separate into symmetric and antisymmetric
branches. Eigenvalues 2S and 2A are the bifurcating and neutral modes associated
with a circle pitchfork. However, the behaviour in figure 17 is simpler than that of
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Figure 16. The pure mode state at Re = 500: (a) vertical velocity contours at z = Γ/6 (top), z = 0
(middle), z = −Γ/6 (bottom). (b) Vector field (v, w) and contours of u showing a vortex pair at
r = 0.75. (c) Vector field (u, w) and contours of v at θ = 0, π through the vortices (top) and at
θ = π/2, 3π/2 perpendicularly to the vortices (bottom). (d ) Unfolded vector field (v, w) and contours
of ωr at r = 0.75. The vortices are centred on elliptic points near θ = 0; π, z = 0 and diametrically
located from hyperbolic points near θ = π/2; 3π/2, z = 0.

figure 11, due to the constraints imposed by symmetry. The eigenvectors associated
with the pure modes (unlike those associated with the mixed modes) remain classifed
according to wavenumber: one set contains only odd Fourier modes, the other only
even ones. Thus, the eigenvectors have different symmetries. Because of this, they
remain decoupled and cannot become complex.

Representative eigenvectors are shown in figure 18. In terms of the normal form
(2.5), the pure mode corresponds to x2, with x1 = y1 = y2 = 0. Eigenvectors 2S , 2A,
1S and 1A correspond to x2, y2, x1 and y1. (Recall that xj , yj , zj , with subscripts,
are used to denote real or complex amplitudes, rather than the spatial coordinate
directions.) The pure mode state shown in figure 18 actually possesses two reflection
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Figure 17. The four most dangerous eigenvalues as functions of Re about the basic state for
Re 6 ReP = 401 and about the pure mode state for ReP = 401 6 Re 6 ReM′P = 452. Thresholds
are indicated by filled dots: ReM = 349, ReP = 401, ReMP = 418, ReHet = 427.4, ReM′P = 452.
For the basic state, the symbols 1 (solid line) and 2 (dashed line) refer to the two-dimensional
eigenspaces corresponding to m = 1 and m = 2, respectively. For the pure mode state, eigenvectors
are classified as symmetric (S) or antisymmetric (A) under Rπ. The 2S eigenvalue (short-dashed
line) is that which is stabilized by the circle pitchfork and the 2A eigenvalue (heavy solid line) is the
marginal mode corresponding to rotation. The eigenvalues 1S and 1A, both positive at ReP , become
negative at ReMP = 418 and ReM′P = 452, respectively, above which the pure mode states are stable.
At ReHet = 427.4, eigenvalues 1S and 1A are equal and opposite, marking the stabilization of a
heteroclinic cycle.

symmetries: combined reflection in x and z, i.e. the operator Rπ defined in (2.3b), and
also combined reflection in y and z. The eigenmodes that we have termed 1S and 1A
in figure 18 are symmetric (antisymmetric) with respect to Rπ.

The eigenvalues λ1S and λ1A are both positive at ReP . Both must become negative
in order for the pure mode branch to be stabilized. Each of these events is associated
with a bifurcation. λ1S becomes negative at ReMP = 418, when the mixed mode branch
is destroyed in a pitchfork bifurcation onto the pure mode branch, as mentioned in
§ 5.1. λ1A becomes negative at ReM ′P = 452, where, according to the analysis of
Armbruster et al. (1988), another mixed mode M ′ is created via pitchfork bifurcation
from the pure mode branch, finally stabilizing the pure mode branch.

Another bifurcation, labelled ReHet in figure 17, refers to the stabilization of
heteroclinic cycles, to which we now turn our attention.

5.4. Heteroclinic cycles

The most intriguing feature of the 1:2 resonant mode interaction under O(2) symmetry
is the existence and stability of heteroclinic cycles over a range of Reynolds number,
as described by Armbruster et al. (1988) and Proctor & Jones (1988). In their analysis,
the branch (torus) of modulated waves arising at ReMWH is destroyed by meeting a
heteroclinic cycle at ReHet. Indeed, we find that, beyond ReHet = 427.4, the solution
follows an attracting heteroclinic cycle which links a pure mode P with another
dynamically equivalent pure mode P ′ obtained by rotation of π/2. Figure 19 shows
time series corresponding to the transition from modulated waves to a heteroclinic
cycle at Re = 430.
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2A2S 1A1SPure mode

Figure 18. Vertical velocity contours at z = Γ/6 (top), 0 (middle), −Γ/6 (bottom) for the unstable
pure mode at Re = 410 and its four most unstable eigenvectors. Positive (negative) contours are
indicated by solid (dashed) curves.

The analysis of Armbruster et al. (1988) demonstrates that the heteroclinic cycle is
controlled by eigenvalues λ1S and λ1A and corresponding eigenvectors, shown for our
flow in figures 17 and 18. The heteroclinic cycle is created at ReMP , when λ1S becomes
negative, but it is unstable. It is stabilized at ReHet, when λ1S and λ1A are equal and
opposite and is attracting for ReHet 6 Re < ReM ′P . At ReM ′P , λ1A becomes negative
and the pure modes become stable fixed points rather than saddles, thus destroying
the heteroclinic cycle.

Figure 20 displays instantaneous flow fields from a heteroclinic cycle connecting
pure modes P and P ′ at Re = 430; this heteroclinic cycle is obtained for different
initial conditions from that shown in figure 19 (see below). P (figure 20a, e) and P ′
(figure 20c, g) each contain two axes of symmetry and oval-like centres. Evolution
from P and P ′ takes place by breaking the symmetry of reflection with respect to the
minor axis of the oval. The intermediate phases (figure 20b, d, f, h) are characterized
by the predominance of m = 1 and other odd Fourier components. In each row of
figure 20, the flow evolves in the same way, but in a different direction. In the first
row, in (bi, ii), we see an inner circular w = 0 contour moving to the right. In the
second row (d i, ii) the same circle moves upwards, in the third row ( f i, ii) it moves
leftwards, and in the fourth row (hi, ii) it moves downwards.

This heteroclinic cycle is also shown schematically on the left of figure 21, where
the labels a, b, c and d correspond to those used in figure 20. The three normal form
amplitudes retained are (x1, y1, x2), corresponding to eigenvenctors 1S , 1A, and 2S .
Two pure mode states P and P ′ are located at diametrically opposite points of the
x2-axis ((2.3a) and (2.4a) show that rotation of the flow field by π/2 about the vertical
axis is represented as multiplication by −1 of z2).

The cycle leaves a, located in the vicinity of P , along its unstable eigenvector x1,
which is the stable eigenvector of pure mode P ′. Rotation of the pure mode state by
π/2 takes place during the rapid phase b. The cycle passes through c, in the vicinity
of the other pure mode state P ′, then leaves along the unstable eigenvector y1 of P ′



Exactly counter-rotating von Kármán swirling flow 73
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Figure 19. Time series corresponding to the approach to a near-heteroclinic cycle at Re = 430.
Top: Velocity w(1/2, 0, 0). Middle: Energy component m = 2 in logscale. Bottom: Energy component
m = 1 in logscale. The initial sinusoidal modulation of the energy components has a period which
is very small compared to that of the underlying rotating wave, as can be seen on the velocity
signal. The evolution then becomes highly anharmonic as a near-heteroclinic cycle is approached,
and consists of plateaux in E2, separated by phases of alternating exponential growth and decay
of E1. Note that the initial conditions for this cycle are different from those of figures 20 and 22.

to undergo a rapid phase d. The cycle reapproaches P at a different point, labelled
e. It then undergoes a rapid phase f, approaches P ′ at point g, undergoes another
rapid phase h, finally returning to P at a.

Corresponding time series are shown in figure 22 in linear scale for a vertical
velocity signal (top) and in logscale for energy components (middle and bottom).
We find that, after transients die out, the oscillation period saturates as is typical of
numerical simulations near heteroclinic cycles, due to either noise (Aubry et al. 1988)
or imperfection (Proctor & Jones 1988). The period is controlled by the time spent in
the neighbourhoods of the pure modes P and P ′, which are saddles, when the energy
is dominated by the m = 2 component. The time series of w in figure 22 takes the
form of four plateaux of equal periods τ ' 714, during which the state is very near
either P or P ′, separated by rapid spikes. The period of the near-heteroclinic cycle
shown is thus T ' 4τ = 2856. The most noticeable feature of the time series of logE
is the alternation between exponential growth and decay of the m = 1 component.
The positive and negative slopes correspond to eigenvalues λ1A > 0 and λ1S < 0,
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(a) (b)

(c) (d)

(e) ( f )

(g) (h)

(i) (ii) (iii)

Figure 20. Vertical velocity contours at z = 0 for a near-heteroclinic cycle at Re = 430. The cycle
connects the pure mode P in (a) with the state P ′ obtained by rotation of π/2 in (c). Intermediate
states, dominated by m = 1 and other odd Fourier components, are shown in (b), (d ), ( f ) and (h).

respectively. The cycling between the four plateaux is also seen in the slight periodic
variation of m = 1 energy minima in figure 22.

We have computed another near-heteroclinic cycle at Re = 435, visualized in figure
23. This cycle consists of two plateaux rather than four. Figure 24 displays the
temporal evolution of a typical velocity and of the energy in the m = 1 and m = 2
components. Two plateaux per cycle can be seen, each of length τ ' 900 and the total
period is T ' 2τ = 1800. The two plateaux again appear as two minima of slightly
different magnitudes in the m = 1 energy component of figure 24. Thus, the approach
to P ′ is closer than that to P in this ‘shadowing’ of the heteroclinic cycle. (In contrast,
in the case of four plateaux, the near-heteroclinic cycle passes closer to P and to P ′,
and then farther from each.) This cycle is depicted schematically as the right-hand
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Figure 21. Schematic phase portraits of heteroclinic cycles. The three dimensions retained are
(x1, y1, x2) of the normal form (2.5). Left: A four-plateau cycle; right: a two-plateau cycle. The two
pure mode states, P and P ′, labeled as a and c and related by rotation by π/2, are located at
diametrically opposite points of the x2-axis. b and d label portions of the cycle during which the
flow undergoes rapid rotation by π/2. The unstable eigenvector of a is in the x1-direction, that of c
along the y1 direction. In the four-plateau diagram on the left, the cycle traverses a, b, c, d, e, f,
g, h. In the two-plateau diagram on the right, it traverses a, b, c, d. Labels correspond to those in
figures 20, 22, 23 and 24.

half of figure 21. After passing through a, b, c and d, the cycle reapproaches P at a
and the cycle then repeats.

The difference between the two types of heteroclinic cycles would seem to be
determined by a combination of Reynolds number and the choice of the initial
conditions. Table 1 summarizes the types of heteroclinic cycles we have obtained. The
initial conditions are of two types. One type, which we term straight alignment, is
a pure mode state whose symmetry axes are oriented along θ = 0, π/2, π, 3π/2 as in
figure 20. Noise of amplitude 5 × 10−9 is added to the m = 1 Fourier component of
the azimuthal velocity of the initial condition at each spatial point. (The maximum
value of the azimuthal velocity is one, by virtue of our non-dimensionalization.) The
other type of initial condition, which we term arbitrary alignment, is a travelling wave
computed at a smaller Reynolds number as in figure 23.

At Re = 428, we have obtained only heteroclinic cycles with four plateaux. At
Re = 430, we have obtained cycles with either four plateaux, or with two plateaux.
The initial condition for the cycle with four plateaux, shown in figures 20 and 22 is
a pure mode with straight alignment. When instead an initial condition of arbitrary
alignment is used at Re = 430, the cycle eventually contains two plateaux rather than
four, as shown in figure 19. At Re = 435, we obtain heteroclinic cycles containing
two plateaux, such as that shown in figures 23 and 24, for initial conditions of either
alignment.

The symmetry axes are theoretically of no importance, but the numerical spatial
discretization could be responsible for enforcing an invariant subspace associated
with symmetry axes θ = 0, π/2, π, 3π/2 for the m = 2 Fourier component which is
not maintained for arbitrary off-centred symmetry axes.

Table 1 also demonstrates other quantitative properties of these numerical approxi-
mations to heteroclinic cycles. The duration τ of each plateau increases with Re, while
the minimum of E1 decreases as Re is increased. There are also slight differences in τ
and E1 between cycles of straight and arbitrary alignment. For a genuine heteroclinic
cycle, τ would increase and E1 would decrease without bound for each simulation,
approaching infinity and zero, respectively, rather than saturating at the finite values
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Figure 22. Time series corresponding to a near-heteroclinic cycle at Re = 430. Top: Velocity
w(1/2, 0, 0). Middle: Energy component m = 2 in logscale. Bottom: Energy component m = 1 in
logscale. The near-heteroclinic cycle consists of four plateaus separated by rapid spikes and has
period T ' 2856. Note that the initial conditions for this cycle are different from those of figure 19.
The exponential growth and decay of the m = 1 energy component correspond to λ1A and λ1S ,
respectively, which are the unstable and the weakest stable eigenvalues of the pure mode branch.

shown. For the run at Re = 435 described in the last line of table 1, we have carried
out a simulation with a smaller timestep ∆t = 0.5× 10−2. This run yielded periods τ
which differed by less than 0.33% from those obtained with ∆t = 10−2.

5.5. Final comments on bifurcation sequence

We recapitulate our results by showing a quantitative bifurcation diagram correspond-
ing to the schematic diagram shown as figure 9. Figure 25 shows the square root of the
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Re Alignment Plateaux Duration τ min E1 Figures

428 Straight 4 550 10−14 Not shown
428 Arbitrary 4 550 10−14 Not shown
430 Straight 4 714 10−19 20, 22
430 Arbitrary 4→ 2 710 10−19–10−18 19
435 Straight 2 930 10−24–10−23 Not shown
435 Arbitrary 2 900 10−23–10−22 23, 24

Table 1. Heteroclinic cycles. Depending on the Reynolds number (Re) and the alignment (straight
or arbitrary) of the initial pure mode, the cycle may have four or two plateaux. As Re is increased,
the duration τ of each plateau increases and minimum value of E1 decreases.

(a) (b)

(c) (d)

(i) (ii) (iii)

Figure 23. Vertical velocity contours at z = 0 for a near-heteroclinic cycle at Re = 435. The cycle
connects pure modes P (a) and P ′ (c), related by rotation of π/2. Intermediate states, dominated
by m = 1 and other odd Fourier components, are shown in (b) and (d ).

total energy for all the states which we have computed. It shows the pure mode branch
starting at Re = 401 and meeting the mixed mode branch at ReMP = 418. The energy
of the travelling wave states which are stable for 412 = ReTW 6 Re 6 ReMWH = 427.3
is constant and lies above the mixed and pure mode branches. The energy of the per-
iodic near-heteroclinic cycles which are stable for ReHet = 427.4 6 Re 6 ReM ′P = 452
is time-dependent, but is equal during almost the entire period to that of the unstable
pure mode branch.

Despite using only time-integration of the nonlinear and of the linearized Navier–
Stokes equations, we have been able to calculate almost all of the dynamical states and
eigenvectors of interest by imposing symmetries indicated by the simulations and the
normal form. There are two exceptions, which can be seen as the dot-dashed curves in
the schematic bifurcation diagram of figure 9 which are absent from the quantitative
bifurcation diagram of figure 25. The first exception is the mixed mode branch M ′
which is necessarily created at ReM ′P = 452 when the eigenvalue λ1A crosses zero,
stabilizing the pure mode branch. Even without computing the M ′ branch, we have
been able to draw sufficient conclusions to justify drawing the branch as we have done
in figure 9. First, M ′ necessarily branches to the right from ReM ′P , since otherwise
it would be stable and observed in our simulations. Secondly, branch M ′ does not
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Figure 24. Time series corresponding to a near-heteroclinic cycle at Re = 435. Top: Velocity
w(1/2, 0, 0). Middle: Energy component m = 2 in logscale. Bottom: Energy component m = 1 in
logscale. The near-heteroclinic cycle consists of two plateaux separated by rapid spikes and has
period T ' 1800. The exponential growth and decay of the m = 1 energy component correspond
to λ1A and λ1S , respectively, which are the unstable and the weakest stable eigenvalues of the pure
mode branch.

intersect the basic state in a pitchfork bifurcation analogous to ReM , although this
occurs in the full (µ1, µ2) unfolding of the 1:2 resonance. We know that our path
through the (µ1, µ2) parameter space does not take us through this bifurcation, since
the linear stability analysis displayed in figure 8, together with a calculation via
the Arnoldi method of the next leading m = 1 eigenpair, shows no evidence of a
second bifurcation of m = 1 modes for Re 6 1000. The second branch we have been
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Figure 25. Square root of total energy as a function of Re. Stable solutions are indicated by solid
curves and unstable ones by dashed curves. ×, M modes; �, TW ; +, P modes; ©, near-heteroclinic
cycles. Thresholds are indicated by dots.

unable to compute is the travelling-wave branch above ReMWH = 427.3, where it loses
stability via a Hopf bifurcation. The travelling waves are neither axisymmetric nor
reflection-symmetric, and so the Hopf bifurcation cannot be suppressed by imposing
any spatial symmetry.

The M ′ mixed mode branch could in principle be calculated via standard con-
tinuation techniques using a matrix-free Newton’s method, as was done for the
axisymmetric steady states; see § 3.2.1. The unstable travelling-wave branch could
also be calculated in this way by solving simultaneously for the rotating frame in
which it appears as a steady solution. However, the inexact imposition of incom-
pressibility via pressure projection in the non-axisymmetric time integration code (see
§ 3.1.3) renders problematic its adaptation to carry out Newton’s method.

In figure 26, we present a schematic phase diagram like that in Armbruster
et al. (1988) of the unfolding of the codimension-two point µ1 = µ2 = 0. Figure 26
includes the (schematic) path in the (µ1, µ2)-plane which is followed by our von
Kármán flow as the Reynolds number is increased. We have used the expressions in
Armbruster et al. (1988) for the bifurcation sets:

M : µ1 = 0, µ2 < 0, (5.2a)

P : µ2 = 0, (5.2b)

TW : µ2 =
d

c
µ1 +

−e
2c2

(
1−√1− 4cµ1

)
, (5.2c)

MP : µ1 =
µ2

b
+

√
µ2

−e22

, (5.2d)

MWH : µ2 = aµ1, (5.2e)

Het : µ2 = bµ1, (5.2f)

M ′P : µ1 =
µ2

b
−
√

µ2

−e22

, (5.2g)

TW ′ : µ2 =
d

c
µ1 +

−e
2c2

(
1 +

√
1− 4cµ1

)
, (5.2h)

M ′ : µ1 = 0, µ2 > 0, (5.2i)

SW : µ2 ≈ −3e22µ
2
1, (5.2j)
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Figure 26. Phase diagram. Curves in the (µ1, µ2)-plane show bifurcation loci for the normal form.
The heavy curve shows schematically a path corresponding to increasing Re in our fluid-dynamical
simulations of the von Kármán flow. The bifurcations we observe correspond to intersections of
the path with the bifurcation loci and are indicated by dots. Bifurcations from basic state to mixed
modes M and pure modes P , from mixed modes to travelling waves TW , joining mixed and pure
modes MP , from travelling waves to modulated travelling waves MWH , from modulated travelling
waves to heteroclinic orbits Het, and joining mixed and pure modes M ′P , and terminating the
travelling waves TW ′ are encountered sequentially. Bifurcation loci in the normal form which
appear on the diagram but either are not traversed by our path or are not directly observed are
from the basic state to mixed mode M ′, terminating the travelling waves TW ′, and from mixed
modes to standing waves SW .

where the coefficients a, b, c, d and e are derived from the normal form quantities
e11, e12, e21, e22 of (2.5) via

b =
e22

e12

, c = 2e11+e12, d = 2e21+e22, e = 2c+d, a = 1+
9(e22 − e12)

e− 3(e22 − e12)
. (5.3)

We have set

e11 = −1, e12 = −0.9, e21 = −3, e22 = −1.6, (5.4)

since we have found that these values reproduce the sequence of bifurcations computed
numerically and shown in bifurcation diagrams 9 and 25.

Our computations coincide very closely with the analysis of the normal form by
Armbruster et al. (1988) and Proctor & Jones (1988). The very large number of
degrees of freedom in the hydrodynamic system or its numerical discretization could
thus be interpreted as damped modes which are ‘slaved’ to the four components of
the normal form (2.5). We mention here the few curious features that may merit
further investigation.

It is intriguing that five eigenvalues are necessary to account for all three bifurca-
tions undergone by the mixed mode at ReM , ReTW , and ReMP , as described in § 5.1.
This feature moderates the interpretation of our von Kármán flow as a faithful real-
ization of the four-dimensional normal form (2.5). Although the behaviour at each of
ReM , ReTW , and ReMP is as predicted from the normal form, it is not possible to pass
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continuously through all three bifurcations while retaining only a four-dimensional
system. Other eigenvalues of the hydrodynamic system are sufficiently close to the four
critical eigenvalues to become entangled with them, possibly because of the distance
of our system from the codimension-two point.

In the analysis of Armbruster et al. (1988), modulated waves exist between the Hopf
bifurcation at ReMWH and the global bifurcation at ReHet and are stable if ReMWH <
ReHet. In our case ReMWH = 427.3, as determined by measuring the growth and decay
rates of sinusoidal modulations, and ReHet = 427.4, as determined by the criterion
that the leading non-zero eigenvalues be equal and opposite. It is clear, however, that
our case is very close to a codimension-two point at which ReMWH and ReHet coincide.

In the normal form analysis, the heteroclinic cycles may be destroyed by colliding
with standing waves which are themselves generated at a Hopf bifurcation from a
mixed mode branch. This is not a necessary part of the scenario; its presence will
depend on the path taken through the (µ1, µ2)-plane. We see no evidence of standing
waves in our simulations.

The main question is that of different types of near-heteroclinic cycles. We obtain
timeseries consisting of four or two plateaux, depending on the Reynolds number and
the axis of symmetry of the initial conditions. Mercader et al. (2001) have conducted
simulations of weakly non-Boussinesq Rayleigh–Bénard convection in two spatial
dimensions. (The Boussinesq approximation leads to an additional Z2 symmetry, for
which the 1:2 codimension-two normal form excludes the quadratic terms in (2.5)
which produce the interesting dynamics, cf. Armbruster (1987) and Cox (1996).)
The near-heteroclinic cycles produced by these simulations depend on the Rayleigh
number just as ours do on the Reynolds number: at parameter values near the
transition from modulated waves to heteroclinic cycles, cycles with four plateaux
are produced, while further from the transition, the cycles have two plateaux. These
authors describe four-plateau and two-plateau cycles as possessing rotating phase and
trapped phase, respectively.

Mercader et al. (2001) also discovered near-heteroclinic cycles in which the phase of
the m = 1 component alternates chaotically rather than regularly. In contrast, we have
not observed chaotic behaviour in any of our near-heteroclinic cycles. These authors
raise a number of basic questions about the near-heteroclinic cycles, concerning the
presence and causes of chaos, the saturation of the period in numerical simulations,
and the role of the phase or alignment in the initial conditions. They even conjecture
that the heteroclinic cycles, whose existence has been proved only for the normal
form, may actually not exist for higher-dimensional realizations of the 1:2 resonance,
although ‘ghosts’ of them would remain present. The stability of the cycles, if they exist,
has, in contrast, been proven for higher-dimensional systems (Krupa & Melbourne
1995).

Although further investigation of the heteroclinic cycles in our system would be
desirable, these simulations are extremely time-consuming. The heteroclinic cycles
discussed in § 5.4 each required between 40 and 110 CPU hours on a NEC-SX5
supercomputer with a speed of 5 Gflops, making systematic investigation unfeasible.

6. Physical mechanisms
In this section, we discuss the basic axisymmetric flow in the context of the early

theoretical analysis of flow above a single rotating disk or between two disks of
infinite radius. We will then propose a physical mechanism for the instability to
non-axisymmetric flows that we have observed in our numerical simulations.
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Figure 27. Typical azimuthal profiles of the axisymmetric basic state at Re = 355: (a) v(r, z) at
different radii as indicated; (b) v(r, z)/r at different radii as indicated. The similarity zone, defined
as the region in which the profiles v(r, z)/r depend only slightly on r, extends from r = 0 to r = 0.5.

Historically (von Kármán 1921; Batchelor 1951), the axisymmetric flow between
differentially rotating disks of infinite radial extent (Γ = 0) was shown to be described
by a similary solution in which the fluid ‘disk’ at each height z rotates with an angular
velocity which is a function of z. That is, each fluid disk carries out solid-body
rotation. When Γ is greater than zero, this remains approximately true over a radial
range sufficiently far from the bounding cylinder (Cousin-Rittemard et al. 1998). In
figure 27, we show the azimuthal velocity v(r, z) and angular velocity v(r, z)/r profiles
for the basic flow at Re = 355 as a function of z for radii ranging from 0.1 to 0.9.
Figure 27(b) shows that for Re = 355, a similarity zone exists over 0 6 r 6 0.5,
in which v(r, z)/r depends only weakly on r. The same is true for the azimuthal
velocity profiles at Re = 410, which greatly resemble those at Re = 355. For both
Re = 355 and Re = 410, the maximum azimuthal velocity is 7–8 times greater than
the maximum radial or axial velocities, providing a quantitative justification for a
qualitative description of the flow as consisting of a dominant azimuthal shear layer
and second-order recirculation zones. Indeed, Lopez et al. (2002) established that the
dynamics of this system are dominated by the free shear layer lying between two
regions of opposite azimuthal velocity, confirming the hypothesis previously proposed
by Lopez (1998).

We now put forth an interpretation of the mechanism of the instability of the
basic flow. Figure 28 shows the spatial distribution of the energy of the eigenvectors
responsible for the m = 1 and m = 2 bifurcations. The localization of this energy
around the z = 0 mid-plane suggests that the cause of the instability is to be found
in the nature of the basic flow in this region. The vortical structures seen near
the mid-plane in the mixed and pure modes shown in figures 10 and 16 bear a
resemblance to the chain of co-rotating vortices, sometimes called cat’s eyes, seen in the
Kelvin–Helmholtz instability. The Kelvin–Helmholtz instability is a two-dimensional
instability of a one-dimensional velocity profile u(y)ex to eigenmodes of the form
(u′(y)ex + v′(y)ey) eiαx. Betchov & Szewczyk (1963) studied the instability of the classic
shear layer profile

u(y) = U tanh(y/δ), (6.1)

which serves as the paradigm for the Kelvin–Helmholtz instability. Betchov &
Szewczyk (1963) plot the marginal stability curve in the (ReKH, α)-plane, where
ReKH = Uδ/ν and α is given in units of δ−1.

We seek to adapt this analysis in our case to describe the instability of a velocity
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Figure 28. Energy contours for the m = 2 at eigenvector at Re = 410 (left-hand side) and the
m = 1 eigenvector at Re = 355 (right-hand side).

profile v(z)eθ to eigenmodes of the form (v′(z)eθ + w′(z)ez) eimθ , treating the weaker
radial dependence as parametric. For r . 0.75, i.e. except near the outer cylinder,
the profiles in figure 27 present vertical tangents in the v/r profiles at z ≈ ±0.4. The
central range −0.4 6 z 6 0.4 of the profiles can be fitted to the central portion of a
hyperbolic tangent function:

v(r, z)/r = ω(r) tanh(z/δ(r)). (6.2)

In our analysis, ReKH and α depend on r, and the wavelength is quantized by the
finite circumference of the cylinder. In our units and geometry,

ReKH (r) = rω(r)δ(r)Re, (6.3a)

since ν = 1/Re, with Re defined by (2.1b), and

α(r) = δ(r)m/r, (6.3b)

since the circumference corresponding to an azimuthal wavenumber m at a radius r
is 2πr/m. The values of δ(r) and ω(r) obtained in this way are both about 0.3. (δ
decreases from 0.29 for Re = 350 to 0.24 for Re = 500, while ω increases from 0.27
for Re = 350 to 0.35 for Re = 500.)

We calculate ω(r) and δ(r) for the basic axisymmetric velocity fields at Re = 300,
Re = 350, and Re = 400, which are below, near, and above the m = 1 instability
threshold. We then calculate α(r) and ReKH (r) via (6.3a)–(6.3b). In figure 29(a), we
plot these points. We also plot the marginal stability curve of Betchov & Szewczyk
(1963); the Kelvin–Helmholtz unstable region is below the curve.

It can be seen that, for Re = 300, the curve (ReKH (r), α(r)) is almost tangent to the
Kelvin–Helmholtz marginal stability curve at r = 0.6, but lies primarily in the stable
region. For Re = 350, the curve (ReKH (r), α(r)) lies in the Kelvin–Helmholtz unstable
region for r > 0.45. For Re = 400, the range r > 0.4 of the curve (ReKH (r), α(r)) lies
deeper within the unstable region.

Many factors complicate this application of the Kelvin–Helmholtz instability. One
factor is the finite width in r occupied by the instability. The usual analysis of the
Kelvin–Helmholtz instability assumes an infinite extent in the spanwise direction z,
which is analogous to r in our analysis. The Kelvin–Helmholtz instability cannot thrive
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Figure 29. Wavenumber α (in units of the inverse shear layer thickness) as a function of ReKH
computed for (a) m = 1 and (b) m = 2 together with the marginal stability curve of Betchov &
Szewczyk (1963) (shown as a continuous line). In (a), from top to bottom, Re = 300, 350, 400 and
in (b), Re = 400, 450, 500. Points correspond to r values of 0.75, 0.7, . . . 0.1.

in an infinitesimal spanwise (or radial) slice, because of damping due to spanwise
(radial) gradients. This damping would justify the fact that the instability threshold
we observe occurs at Re = 349, where much of the curve (ReKH (r), α(r)) lies in the
unstable region, rather than at Re = 300, where the curve barely penetrates it. We
may introduce the heuristic criterion that instability occurs when the unstable radial
range occupies a width 2δ(r). Other factors neglected by this analysis, which are more
difficult to take into account heuristically, are the radial and axial components of
the basic flow. The axial component w of the basic flow is zero at the mid-plane, as
required by symmetry and shown in figure 2, and hence small in the equatorial region.
The radially inward jet at the equator, also shown in figure 2 is, however, not small,
with u ≈ −0.06 to be compared with the azimuthal component of order v ≈ 0.15 in
the shear layer. We have also neglected curvature. Finally, it should be recalled that
the analysis of Betchov & Szewczyk (1963) is itself approximate. Since (6.1) is not
an exact solution to the Navier–Stokes equations, their analysis can be interpreted as
describing a system in which an external force is added which maintains the shape
and intensity of the profile (6.1).

The same analysis can be carried out for the m = 2 instability. Figure 29(b)
shows (ReKH (r), α(r)) for the basic axisymmetric velocity fields at Re = 400, Re = 450,
and Re = 500, with α(r) calculated via (6.3b), this time using m = 2. The curve
(ReKH (r), α(r)) for Re = 400 lies above the Kelvin–Helmholtz instability boundary,
that for Re = 450 almost tangent to the instability boundary, and that for Re = 500
inside the instability boundary for r > 0.5. Our analysis is less successful in this case,
since the m = 2 instability we observe occurs at Re = 401, a value for which the curve
(ReKH (r), α(r)) is everywhere outside the Kelvin–Helmholtz instability boundary.

It is possible that the study closest to our parameter values, that of Lopez
et al. (2002) for Γ = 0.5 and s = −0.8 (and v = 1 at r = 1 instead of v = 0) may
also be amenable to this analysis. If the height δ(r) of the shear layer occupied
a constant proportion of the cylinder height, then the values of δ(r) for Γ = 0.5
would be a quarter of our value for Γ = 2. In order to achieve the same values
of ReKH and α in (6.3a)–(6.3b) that we have observed, each of Re and m would
need to be multiplied by 4. Indeed, Lopez et al. (2002) observe competition between
m = 4 and m = 5 patterns. The critical Reynolds number, however, is smaller than
4× 350 = 1400, since their patterns were observed at Re = 1000. (They did not de-
termine a Reynolds number threshold for fixed s, but instead fixed Re = 1000 and
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varied s.) The scaling m ∼ 2/Γ of the first instability for the strongly counter-rotating
case does not require the detailed Kelvin–Helmholtz mechanism that we have postu-
lated but the much weaker hypothesis that the instability is localized in a shear layer
occupying a constant proportion of the height, leading to an azimuthal wavelength
which is half of the height.

Although our analysis is quite crude, the critical Reynolds number it predicts is
fairly accurate for the m = 1 instability although it overestimates the m = 2 instability
threshold by 20–40%. It is clear that the instability we observe is centred in the
equatorial region; our Kelvin–Helmholtz analysis provides a mechanism for setting
the axial and the azimuthal scales of the instability.

7. Conclusion
The von Kármán flows for different values of aspect ratio Γ and angular velocity

ratio s span a wide variety of instability mechanisms. For our case of Γ = 2, s = −1,
the dynamics are dominated by the instabilities of the equatorial shear layer created
by the counter-rotating disks. Therefore, the flow is most likely to be unstable to
azimuthal equatorial disturbances as was observed in this paper. Neither the radially
inward jet due to the recirculation zones nor the sidewall boundary layer seem to
play a role. The analysis we have presented provides some evidence that the physical
mechanism responsible could be a Kelvin–Helmholtz instability of the equatorial
shear layer, complicated by stretching due to the radially inward jet and confinement
by the fixed shroud.

The angular velocity ratio s = Ωup/Ωlow plays an important quantitative role, and
determines the symmetry of the configuration as well. The von Kármán rotating disk
flows have symmetry group SO(2), the group of rotations about the vertical axis. For
s = −1, the case studied here, rotation by π around the x (or any horizontal) axis is
a supplementary invariance, which leads to the richer O(2) symmetry group.

The particular aspect ratio Γ = H/R = 2 and the quantization of azimuthal
wavenumbers along the perimeter have selected two steady states emerging from
the axisymmetric basic state: a single vortex associated with the m = 1 instability
and a co-rotating vortex pair associated with the m = 2 instability. These states have
similar linear thresholds and compete in a certain range of Reynolds numbers, leading
to multiple complex dynamical behaviours: travelling waves and heteroclinic cycles.
The transitions between these steady states have been placed in a dynamical systems
context: the von Kármán flow with Γ = 2, s = −1, Re < 500 is a fluid-dynamical
realization of the unfolding of the 1:2 resonance with O(2) symmetry.

We gratefully acknowledge Pascal Chossat for alerting us to the O(2) symmetry of
our system; Jean-Luc Guermond and Pierre Lallemand for comparing our numer-
ical results with those from their finite element and Boltzmann codes; and Edgar
Knobloch, Isabel Mercader, Jeff Moehlis, Jeff Porter and Joana Prat for sharing their
results and insights on near-heteroclinic cycles. The computations were carried out on
the NEC-SX5 computer of the Institut du Développement et des Ressources en Infor-
matique Scientifique (IDRIS) of the Centre National pour la Recherche Scientifique
(CNRS) (project no. 0254).
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Gehaüse mit darin rotierender Scheibe. Tech. Rep. 6, Max-Planck Institute.
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